metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Li Yu, Yong Fang, Cui-Ying Huang, Yuan-Peng Gu and Wan-Sheng You*

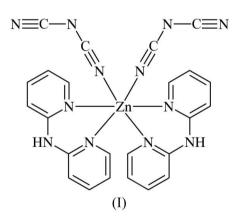
Institute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: wsyou@lnnu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.108 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

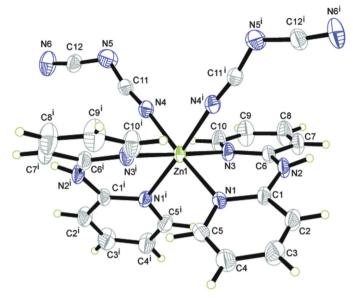

Bis(dicyanamido- κN)(di-2-pyridylamine- $\kappa^2 N, N'$)zinc(II)

The title mononuclear Zn^{II} complex, $[Zn(C_2N_3)_2(C_{10}H_9N_3)_2]$, is isostructural with its Mn^{II} , Co^{II} and Ni^{II} analogues. The Zn^{II} atom lies on a crystallographic twofold rotation axis and is coordinated by two bidentate di-2-pyridylamine ligands and by two dicyanamide ligands in a *cis* orientation.

Received 30 November 2006 Accepted 21 December 2006

Comment

The title Zn^{II} complex, (I), is isostructural with its Mn^{II}, Co^{II} and Ni^{II} analogues (Xu *et al.*, 2003; Huang *et al.*, 2006). The Zn^{II} atom lies on a crystallographic twofold rotation axis and is coordinated in a distorted octahedral geometry by two bidentate di-2-pyridylamine (dpaH) ligands and by two dicyanamide ligands (Fig. 1 and Table 1). The dihedral angle between the pyridine rings of the dpaH ligands lying *trans* to each other [coordinated through N3 and N3ⁱ; symmetry code: (i) -x, y, $\frac{1}{2} - z$] is 25.5 (3)°. The two dicyanamide ligands adopt a *cis* orientation, and each possesses approximate local $C_{2\nu}$ symmetry, the N4–C11 and N5–C11 bond distances being comparable to N5–C12 and N6–C12, and with a C11–N5–C12 angle of 123.9 (3)°.



The complexes lie in layers parallel to (001) (Fig. 2), forming hydrogen bonds between the alkylamino NH groups of the dpaH ligand and the non-coordinated terminal N atoms of the dicyanamide ligands (Table 2).

Experimental

A methanol solution (5 ml) of sodium dicyanamide (0.32 g) and di-2pyridylamine (0.16 g) was added to 10 ml of water. $Zn(NO_3)_2 \cdot 6H_2O$ (0.25 g) dissolved in methanol (10 ml) was layered on the top and colourless block-shaped crystals were obtained after standing at room temperature for several days.

O 2007 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. [Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.]

Z = 4

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_2\text{N}_3)_2(\text{C}_{10}\text{H}_9\text{N}_3)_2] \\ & M_r = 539.89 \\ & \text{Monoclinic, } C2/c \\ & a = 8.6474 \ (11) \text{ Å} \\ & b = 13.5964 \ (18) \text{ Å} \\ & c = 21.632 \ (3) \text{ Å} \\ & \beta = 94.549 \ (2)^\circ \\ & V = 2535.3 \ (6) \text{ Å}^3 \end{split}$$

Data collection

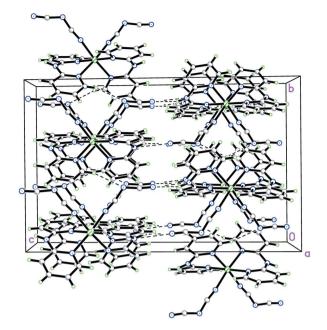
Bruker APEX2 CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.752, T_{\max} = 0.906$

Refinement

Refinement on F^2 H-atom param $R[F^2 > 2\sigma(F^2)] = 0.044$ $w = 1/[\sigma^2(F_o^2)]$ $wR(F^2) = 0.108$ where P = 1S = 1.00 $(\Delta/\sigma)_{max} < 0.02336$ 2836 reflections $\Delta\rho_{max} = 0.311$ 168 parameters $\Delta\rho_{min} = -0.223$

Table 1

Selected geometric parameters (Å, °).


Zn1-N1 Zn1-N4	2.141 (2) 2.157 (3)	Zn1-N3	2.178 (2)
N1 ⁱ -Zn1-N1	95.27 (12)	N1-Zn1-N3	83.07 (9)
$N1-Zn1-N4^{i}$	87.30 (9)	N4 ⁱ -Zn1-N3	89.72 (9)
N1-Zn1-N4	173.16 (9)	N4-Zn1-N3	90.33 (9)
$N4^{i}$ -Zn1-N4	90.88 (13)	N3-Zn1-N3 ⁱ	179.93 (13)
$N1^{i}-Zn1-N3$	96.89 (9)		. ,

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Z = 4
$D_x = 1.414 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
$\mu = 1.01 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.30 \times 0.30 \times 0.10$ mm

7391 measured reflections 2836 independent reflections 1840 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.045$ $\theta_{\text{max}} = 27.3^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³

Figure 2

Packing diagram of (I). Dashed lines indicate hydrogen bonds.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N2-H2B\cdots N6^{ii}$	0.86	2.09	2.904 (4)	157		
Symmetry code: (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.						

H atoms were placed in calculated positions and allowed to ride during subsequent refinement, with C-H = 0.93Å or N-H = 0.86Å, and with U_{iso} (H) = 1.2 U_{eq} (C,N).

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Education Office Foundation of Liaoning Province (project No. 605 L207).

References

- Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, C.-Y., Fang, Y., Gu, Y.-P., Zhang, L.-C. & You, W.-S. (2006). Acta Cryst. E62, m3068–m3070.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Xu, J. Y., Bian, H. D., Wang, Q. L., Gu, W., Yan, S. P., Liao, D. Z., Cheng, P., Jiang, Z. H. & Shen, P. W. (2003). Z. Anorg. Allg. Chem. 629, 1063– 1067.